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Representing the network

• Causal Bayesian network (directed acyclic graph) 

• Nodes:  random variables representing gene 

expression values

• Edges: causal, regulatory relationships

Markov equivalence classes 

• Networks that represent the same set of 

dependencies and conditional independencies, e.g.

Benefit of perturbation data

• Observational data alone cannot distinguish 

among networks in the same equivalence class.

• Perturbing node A affects descendants of A, 

allowing us to distinguish {𝑮𝟏} from {𝑮𝟐, 𝑮𝟑}.

Entropy as a measure of uncertainty 

• Three possible edge relationships for two nodes:

𝑨 → 𝑩, 𝑨 ← 𝑩, and 𝑨 ⊥ 𝑩.

• Tong and Koller (2001) define edge entropy as:

𝑯 𝑨 ↔ 𝑩 = −𝑷 𝑨 → 𝑩 𝒍𝒐𝒈 𝑷 𝑨 → 𝑩
−𝑷 𝑨 ← 𝑩 𝒍𝒐𝒈 𝑷 𝑨 ← 𝑩
−𝑷 𝑨 ⊥ 𝑩 𝒍𝒐𝒈 𝑷(𝑨 ⊥ 𝑩)

• The larger this entropy, the less certain we are 

about the relationship between 𝑨 and 𝑩.

Background

Objective
Motivation: perturb the node whose descendant sets are maximally different. 

• Sampling variability leads to uncertainty in the descendant set partitions.

• Capture uncertainty of whether node 𝑩 is a descendant of 𝑨, 𝒅 𝑨 , via:

𝑯 𝑩 ∈ 𝒅 𝑨 = −𝑷 𝑩 ∈ 𝒅 𝑨 ∗ 𝒍𝒐𝒈 𝑷 𝑩 ∈ 𝒅 𝑨

− 𝟏 − 𝑷 𝑩 ∈ 𝒅 𝑨 ∗ 𝒍𝒐𝒈 𝟏 − 𝑷 𝑩 ∈ 𝒅 𝑨

𝑷 𝑩 ∈ 𝒅 𝑨 is calculated empirically from graphs sampled from the posterior 

on graphs 𝑮 given data 𝑫:

𝑷 𝑩 ∈ 𝒅 𝑨 |𝑫 =  

𝑩∈𝒅 𝑨 ∈G

𝑷(𝑮|𝑫)

Descendant entropy: captures the overall uncertainty in the descendants of 𝑨.
𝑯 𝑨 =  𝒋 𝑯 𝒋 ∈ 𝒅 𝑨 for all nodes 𝒋 in 𝑮\𝑨

• Greatest information gain achieved by perturbing the node with the largest 

descendant entropy.

• “Adaptive descendant” method uses descendant entropy as the criterion; 

substitute  𝒅 𝑨 with 𝐜 𝑨 to compare with the “adaptive child” method.
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experiment
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1. Sample 𝒏𝒐𝒃𝒔 instances from the ground truth Bayesian network.

2. Use MCMC to obtain posterior samples from 𝑷 𝑮 𝑫).
- Metropolis-Hastings proposals with an edge addition, deletion, or reversal.

3. Calculate 𝑷 𝑩 ∈ 𝒅 𝑨 and 𝑯 𝑩 ∈ 𝒅 𝑨 empirically from the sampled graphs

for all node pairs.    

4. Check the stop criterion. Continue performing experiments until either:

- minimum desired entropy is achieved

- maximum number of allowed experiments is reached      

5. Select 𝒂𝒓𝒈𝒎𝒂𝒙 𝑨 ∈ 𝑻 𝑯(𝑨) as the next node to perturb. 

- 𝑻: set of nodes eligible for interventions.

6. Generate 𝒏𝒑𝒆𝒓𝒕 instances from the Bayesian network.

7. Combine the new data with the existing data and return to step 2. 

Adaptive Learning Algorithm

To build an adaptive learning algorithm for inferring 

gene networks by iterating between experimentation 

and analysis. 

Protein-signaling network used to simulate gene expression data, adapted 

from Sachs et al. (2005): 
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Perturb C:

partitions graphs into 4 sets

Perturb A: 

only partitions graphs into 2 sets

The adaptive descendant (AD) and adaptive child (AC) methods outperform  

random (R) node selection, as evidenced by:  

(1) faster rates of entropy reduction, and

(2) greater accuracy in inferring the true causal network.
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